Load country-wide data by gender and age (age in 6 bins)
Arguments
- path
path(s) to file(s), Will be file with "CR_YYQD and either "PLS" or "MZS" in the name.
- sheet
sheet number; you should be able to leave this as default (2) if using files downloaded from ISPV
Examples
pv_cr_monthlypay_age_gender(system.file("extdata", "CR_204_MZS.xlsx", package = "ispv"))
#> # A tibble: 21 × 20
#> category fte_t…¹ pay_m…² pay_m…³ pay_d1 pay_q1 pay_q3 pay_d9 pay_m…⁴ pay_m…⁵
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 CELKEM -… 2893. 31567. 105. 18402. 23915. 42283. 60110. 37789. 105.
#> 2 do 20 let 7.10 23743. 109. 16501. 20063. 28256. 33070. 24587. 109.
#> 3 20 – 29 … 433. 29978. 104. 18603. 23843. 37716. 47923. 32397. 105.
#> 4 30 – 39 … 655. 34142. 106. 18948. 25589. 46332. 66049. 40227. 106.
#> 5 40 – 49 … 907. 32394. 105. 18468. 24073. 44434. 66188. 40220. 106.
#> 6 50 – 59 … 665. 30178. 104. 18012. 23033. 40165. 56233. 36315. 105.
#> 7 60 a víc… 226. 30006. 103. 17921. 22549. 40234. 57129. 36040. 103.
#> 8 MUŽI 1733. 34083. 103. 18976. 25844. 45626. 66143. 41070. 104.
#> 9 do 20 let 4.78 24243. 106. 16662. 20352. 28960. 33913. 25089. 107
#> 10 20 – 29 … 269. 31296. 103. 18741. 24735. 39148. 49859. 33609. 104.
#> # … with 11 more rows, 10 more variables: bonus_perc <dbl>,
#> # supplements_perc <dbl>, compensation_perc <dbl>, hours_per_month <dbl>,
#> # file <chr>, group <chr>, sfera <chr>, period <chr>, year <chr>,
#> # quarter <chr>, and abbreviated variable names ¹fte_thous, ²pay_median,
#> # ³pay_median_yoy, ⁴pay_mean, ⁵pay_mean_yoy
pv_cr_monthlypay_age_gender(system.file("extdata", "CR_204_PLS.xlsx", package = "ispv"))
#> # A tibble: 21 × 20
#> category fte_t…¹ pay_m…² pay_m…³ pay_d1 pay_q1 pay_q3 pay_d9 pay_m…⁴ pay_m…⁵
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 CELKEM -… 648. 39900. 110. 25228. 32199. 49028. 61312. 42555. 110.
#> 2 do 20 let 0.393 24277. 117. 14945. 18396. 29113. 35222. 24793. 115.
#> 3 20 – 29 … 58.2 35075. 110. 24872. 29473. 41026. 49294. 36506. 112.
#> 4 30 – 39 … 113. 39780. 109. 26796. 32429. 47538. 58401. 41946. 110.
#> 5 40 – 49 … 208. 40647. 110. 25499. 32583. 49793. 62191. 43097. 110.
#> 6 50 – 59 … 195. 40792. 109. 24521. 32806. 50367. 63173. 43495. 110.
#> 7 60 a víc… 73.5 41487. 109. 24411. 32656. 50713. 65708. 44356. 109.
#> 8 MUŽI 220. 43134. 108. 27744. 34438. 53347. 67127. 46509. 108.
#> 9 do 20 let 0.164 20642. 121. 14945. 15376. 25900. 29018. 21586. 114.
#> 10 20 – 29 … 23.5 35892. 109. 25046. 30055. 41693. 48638. 36839. 110.
#> # … with 11 more rows, 10 more variables: bonus_perc <dbl>,
#> # supplements_perc <dbl>, compensation_perc <dbl>, hours_per_month <dbl>,
#> # file <chr>, group <chr>, sfera <chr>, period <chr>, year <chr>,
#> # quarter <chr>, and abbreviated variable names ¹fte_thous, ²pay_median,
#> # ³pay_median_yoy, ⁴pay_mean, ⁵pay_mean_yoy