Load country-wide data on monthly earnings by education
Source:R/pv_load_cr.R
pv_cr_monthlypay_education.Rd
Loads data on monthly earnings by education level from one or more local Excel files downloaded from ISPV links retrieved by pv_list_reg()
.
Arguments
- path
path(s) to file(s), Will be file with "CR_YYQD and either "PLS" or "MZS" in the name.
- sheet
sheet number; you should be able to leave this as default (3) if using files downloaded from ISPV
Examples
pv_cr_monthlypay_education(system.file("extdata", "CR_204_PLS.xlsx", package = "ispv"))
#> # A tibble: 7 × 20
#> category code fte_t…¹ pay_m…² pay_m…³ pay_d1 pay_q1 pay_q3 pay_d9 pay_m…⁴
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Základní a … A-C 18.7 23677. 116. 16903. 19851. 30684. 37994. 25927.
#> 2 Střední bez… D,E,… 91.8 27805. 113. 20014. 22853. 33758. 39286. 29021.
#> 3 Střední s m… K-M 243. 37925. 109. 27294. 32277. 45802. 54941. 39854.
#> 4 Vyšší odbor… N,P,R 75.1 42642. 110. 30408. 35330. 52666. 62759. 44987.
#> 5 Vysokoškols… T,V 202. 47403. 109. 35854. 41317. 57955. 75660. 52872.
#> 6 Neuvedeno NA 17.1 38828. 113. 26897. 33690. 44131. 51214. 39308.
#> 7 CELKEM - pl… NA 648. 39900. 110. 25228. 32199. 49028. 61312. 42555.
#> # … with 10 more variables: pay_mean_yoy <dbl>, bonus_perc <dbl>,
#> # supplements_perc <dbl>, compensation_perc <dbl>, hours_per_month <dbl>,
#> # file <chr>, sfera <chr>, period <chr>, year <chr>, quarter <chr>, and
#> # abbreviated variable names ¹fte_thous, ²pay_median, ³pay_median_yoy,
#> # ⁴pay_mean
pv_cr_monthlypay_education(system.file("extdata", "CR_204_MZS.xlsx", package = "ispv"))
#> # A tibble: 7 × 20
#> category code fte_t…¹ pay_m…² pay_m…³ pay_d1 pay_q1 pay_q3 pay_d9 pay_m…⁴
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Základní a … A-C 225. 25634. 109. 16096. 19692. 32007. 3.90e4 27178.
#> 2 Střední bez… D,E,… 998. 28180. 104. 17498. 21715. 35304. 4.32e4 29718.
#> 3 Střední s m… K-M 1011. 32740. 105. 19468. 25214. 42978. 5.68e4 36951.
#> 4 Vyšší odbor… N,P,R 151. 37326. 105. 21791. 28339. 51074. 7.32e4 44702.
#> 5 Vysokoškols… T,V 457. 47686. 102. 24563. 33616. 72093. 1.08e5 61016.
#> 6 Neuvedeno NA 51.5 26368. 108. 16130. 19916. 34519. 4.61e4 30738.
#> 7 CELKEM - mz… NA 2893. 31567. 105. 18402. 23915. 42283. 6.01e4 37789.
#> # … with 10 more variables: pay_mean_yoy <dbl>, bonus_perc <dbl>,
#> # supplements_perc <dbl>, compensation_perc <dbl>, hours_per_month <dbl>,
#> # file <chr>, sfera <chr>, period <chr>, year <chr>, quarter <chr>, and
#> # abbreviated variable names ¹fte_thous, ²pay_median, ³pay_median_yoy,
#> # ⁴pay_mean