Skip to contents

Load country-wide data by ISCO (profession classification) at 4 and 5 digits

Usage

pv_cr_monthlypay_isco(path, sheet = 1)

Arguments

path

path(s) to file(s), Will be file with "CR_YYQD and either "PLS" or "MZS" in the name.

sheet

which sheet to open. Will be 1 (the default) in files with only one sheet ("CR_204_MZS_M8r.xlsx") and 7 in comprehensive file ("CR_204_MZS.xlsx")

Value

a tibble

Examples

pv_cr_monthlypay_isco(system.file("extdata", "CR_204_MZS_M8r.xlsx", package = "ispv"), 1)
#> # A tibble: 871 × 21
#>    isco_full fte_t…¹ pay_m…² pay_d1 pay_q1 pay_q3 pay_d9 pay_m…³ bonus…⁴ suppl…⁵
#>    <chr>       <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>   <dbl>
#>  1 1120 Nej…   5.42   91993. 34693. 5.21e4 1.90e5 3.15e5 144016.    24.2    0.65
#>  2 11201 Ne…   1.18  200585. 60919. 1.07e5 3.15e5 4.73e5 244336.    26.1    0.81
#>  3 11202 Ne…   2.53  103946. 34886. 5.82e4 1.94e5 2.95e5 145212.    24.2    0.56
#>  4 11203 Ne…   1.28   52900. 30031. 4.18e4 9.10e4 1.10e5  66750.    19.6    0.58
#>  5 1211 Říd…   7.49   88015. 39263. 5.44e4 1.31e5 1.95e5 108521.    19.5    0.7 
#>  6 12111 Ek…   2.53   93133. 42640. 6.38e4 1.50e5 2.22e5 121126.    21.6    0.65
#>  7 12112 Ří…   2.83   78829. 35594. 4.89e4 1.14e5 1.70e5  96291.    19.2    0.98
#>  8 12113 Ří…   1.47   91182. 45845. 6.14e4 1.25e5 1.90e5 109671.    16.6    0.34
#>  9 1212 Říd…   2.57   88028. 39440. 5.24e4 1.31e5 1.95e5 107242.    17.5    0.6 
#> 10 12121 Pe…   0.614 107879. 54997. 7.60e4 1.68e5 2.47e5 140092.    19.8    0.64
#> # … with 861 more rows, 11 more variables: compensation_perc <dbl>,
#> #   hours_per_month <dbl>, estimate_quality <chr>, file <chr>, sfera <chr>,
#> #   period <chr>, year <chr>, quarter <chr>, isco_digits <dbl>, isco_id <chr>,
#> #   isco_name <chr>, and abbreviated variable names ¹​fte_thous, ²​pay_median,
#> #   ³​pay_mean, ⁴​bonus_perc, ⁵​supplements_perc
pv_cr_monthlypay_isco(system.file("extdata", "CR_204_MZS.xlsx", package = "ispv"), 7)
#> # A tibble: 467 × 21
#>    isco_full fte_t…¹ pay_m…² pay_d1 pay_q1 pay_q3 pay_d9 pay_m…³ bonus…⁴ suppl…⁵
#>    <chr>       <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>   <dbl>
#>  1 1120 Nej…    5.42  91993. 34693. 5.21e4 1.90e5 3.15e5 144016.    24.2    0.65
#>  2 11201 Ne…    1.18 200585. 60919. 1.07e5 3.15e5 4.73e5 244336.    26.1    0.81
#>  3 11202 Ne…    2.53 103946. 34886. 5.82e4 1.94e5 2.95e5 145212.    24.2    0.56
#>  4 1211 Říd…    7.49  88015. 39263. 5.44e4 1.31e5 1.95e5 108521.    19.5    0.7 
#>  5 12111 Ek…    2.53  93133. 42640. 6.38e4 1.50e5 2.22e5 121126.    21.6    0.65
#>  6 12112 Ří…    2.83  78829. 35594. 4.89e4 1.14e5 1.70e5  96291.    19.2    0.98
#>  7 12113 Ří…    1.47  91182. 45845. 6.14e4 1.25e5 1.90e5 109671.    16.6    0.34
#>  8 1212 Říd…    2.57  88028. 39440. 5.24e4 1.31e5 1.95e5 107242.    17.5    0.6 
#>  9 12122 Ří…    1.39  79872. 39535. 4.94e4 1.22e5 1.89e5  98617.    16.2    0.67
#> 10 1219 Ost…    6.53  65974. 29301. 4.26e4 9.73e4 1.47e5  81229.    20.2    1.2 
#> # … with 457 more rows, 11 more variables: compensation_perc <dbl>,
#> #   hours_per_month <dbl>, estimate_quality <chr>, file <chr>, sfera <chr>,
#> #   period <chr>, year <chr>, quarter <chr>, isco_digits <dbl>, isco_id <chr>,
#> #   isco_name <chr>, and abbreviated variable names ¹​fte_thous, ²​pay_median,
#> #   ³​pay_mean, ⁴​bonus_perc, ⁵​supplements_perc
pv_cr_monthlypay_isco(system.file("extdata", "CR_204_PLS_M8r.xlsx", package = "ispv"), 1)
#> # A tibble: 664 × 21
#>    isco_full fte_t…¹ pay_m…² pay_d1 pay_q1 pay_q3 pay_d9 pay_m…³ bonus…⁴ suppl…⁵
#>    <chr>       <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>   <dbl>
#>  1 0110 Gen…  6.60    56520. 42206. 48122. 6.57e4 7.40e4  57230.    1.21    6.65
#>  2 01102 Vy…  2.38    68335. 60819. 62950. 7.37e4 8.15e4  69755.    1.51    6.51
#>  3 01103 Ni…  4.18    50305. 40397. 45022. 5.59e4 5.99e4  49610.    0.98    6.76
#>  4 0210 Pod…  8.57    32639. 29070  30786. 3.56e4 3.87e4  33186.    1.17    5.41
#>  5 0310 Zam…  9.85    42321. 23871. 38351. 4.61e4 4.96e4  40149.    0.77    7.78
#>  6 03101 Pr…  8.13    43607. 38477. 40636. 4.70e4 5.01e4  43941.    0.72    8.45
#>  7 1112 Nej…  2.25    72287. 48419. 60775. 9.25e4 1.22e5  80163.   14.2    29.6 
#>  8 11123 Ne…  0.222  114740. 71977. 90507. 1.51e5 1.69e5 120286.   16      37.5 
#>  9 11124 Ne…  0.0409 101794. 34390. 48523. 1.41e5 1.86e5 101743.   16.0    35.4 
#> 10 11125 Ne…  1.59    72377. 51034. 61947. 8.87e4 1.09e5  77628.   15.0    28.5 
#> # … with 654 more rows, 11 more variables: compensation_perc <dbl>,
#> #   hours_per_month <dbl>, file <chr>, estimate_quality <lgl>, sfera <chr>,
#> #   period <chr>, year <chr>, quarter <chr>, isco_digits <dbl>, isco_id <chr>,
#> #   isco_name <chr>, and abbreviated variable names ¹​fte_thous, ²​pay_median,
#> #   ³​pay_mean, ⁴​bonus_perc, ⁵​supplements_perc
pv_cr_monthlypay_isco(system.file("extdata", "CR_204_PLS.xlsx", package = "ispv"), 7)
#> # A tibble: 289 × 21
#>    isco_full fte_t…¹ pay_m…² pay_d1 pay_q1 pay_q3 pay_d9 pay_m…³ bonus…⁴ suppl…⁵
#>    <chr>       <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>   <dbl>
#>  1 0110 Gen…   6.60   56520. 42206. 48122. 6.57e4 7.40e4  57230.    1.21    6.65
#>  2 01102 Vy…   2.38   68335. 60819. 62950. 7.37e4 8.15e4  69755.    1.51    6.51
#>  3 01103 Ni…   4.18   50305. 40397. 45022. 5.59e4 5.99e4  49610.    0.98    6.76
#>  4 0210 Pod…   8.57   32639. 29070  30786. 3.56e4 3.87e4  33186.    1.17    5.41
#>  5 0310 Zam…   9.85   42321. 23871. 38351. 4.61e4 4.96e4  40149.    0.77    7.78
#>  6 03101 Pr…   8.13   43607. 38477. 40636. 4.70e4 5.01e4  43941.    0.72    8.45
#>  7 1112 Nej…   2.25   72287. 48419. 60775. 9.25e4 1.22e5  80163.   14.2    29.6 
#>  8 11123 Ne…   0.222 114740. 71977. 90507. 1.51e5 1.69e5 120286.   16      37.5 
#>  9 11125 Ne…   1.59   72377. 51034. 61947. 8.87e4 1.09e5  77628.   15.0    28.5 
#> 10 1113 Pře…   0.185  55204. 35375. 45016. 6.55e4 7.69e4  56255.   10.6    25.8 
#> # … with 279 more rows, 11 more variables: compensation_perc <dbl>,
#> #   hours_per_month <dbl>, file <chr>, estimate_quality <lgl>, sfera <chr>,
#> #   period <chr>, year <chr>, quarter <chr>, isco_digits <dbl>, isco_id <chr>,
#> #   isco_name <chr>, and abbreviated variable names ¹​fte_thous, ²​pay_median,
#> #   ³​pay_mean, ⁴​bonus_perc, ⁵​supplements_perc