Load regional data on monthly earnings by profession
Source:R/pv_load_reg.R
pv_reg_monthlypay_age_gender.Rd
Load ISPV Excel files with regional data on monthly earnings by ISCO code
Arguments
- path
path(s) to file(s), Will be file with "Reg_YYQ" and either "PLS" or "MZS" in the name.
- sheet
sheet number; you should be able to leave this as default (2) if using files downloaded from ISPV
Examples
pv_reg_monthlypay_age_gender(system.file("extdata", "Kar_204_pls.xlsx", package = "ispv"))
#> # A tibble: 21 × 23
#> kraj_id…¹ categ…² fte_t…³ pay_m…⁴ pay_m…⁵ pay_d1 pay_q1 pay_q3 pay_d9 pay_m…⁶
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Kar CELKEM… 15.1 38544. 109. 24578. 31164. 46771. 55221. 39930.
#> 2 Kar do 20 … 0.0176 NA NA NA NA NA NA NA
#> 3 Kar 20 - 2… 1.20 34570. 112. 24312. 28787. 39544. 43640. 34258.
#> 4 Kar 30 - 3… 2.49 37657. 108. 25261. 30450. 44988. 50339. 38043.
#> 5 Kar 40 - 4… 4.73 39082. 109. 25373. 31735. 47561. 56925. 40617.
#> 6 Kar 50 - 5… 4.82 39625. 109. 24113 32189. 48704. 58708. 41419.
#> 7 Kar 60 a v… 1.82 39167. 109. 23126. 31225. 48008. 55891. 40667.
#> 8 Kar MUŽI 5.20 42524. 108. 26842. 34015. 50657. 60421. 43626.
#> 9 Kar do 20 … 0.0086 NA NA NA NA NA NA NA
#> 10 Kar 20 - 2… 0.525 38302. 111. 25344 31935. 42236. 44834. 36670.
#> # … with 11 more rows, 13 more variables: bonus_perc <dbl>,
#> # supplements_perc <dbl>, compensation_perc <dbl>, hours_per_month <dbl>,
#> # file <chr>, group <chr>, sfera <chr>, period <chr>, year <chr>,
#> # quarter <chr>, kraj_id <chr>, kraj_name <chr>, kraj_id_nuts3 <chr>, and
#> # abbreviated variable names ¹kraj_id_ispv, ²category, ³fte_thous,
#> # ⁴pay_median, ⁵pay_median_yoy, ⁶pay_mean
pv_reg_monthlypay_age_gender(system.file("extdata", "Kar_204_mzs.xlsx", package = "ispv"))
#> # A tibble: 21 × 23
#> kraj_id…¹ categ…² fte_t…³ pay_m…⁴ pay_m…⁵ pay_d1 pay_q1 pay_q3 pay_d9 pay_m…⁶
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Kar CELKEM… 59.8 28898. 105. 18430. 22914. 36979. 47033. 32029.
#> 2 Kar do 20 … 0.172 23380. 109. 17254. 20224. 27541. 31636. 24375.
#> 3 Kar 20 - 2… 7.87 28118. 106. 18073. 22914. 34173. 40702. 29343.
#> 4 Kar 30 - 3… 11.5 28154. 101. 17694. 22049. 36322. 47238. 31047.
#> 5 Kar 40 - 4… 18.3 29462. 103. 18925. 23410. 38589. 49593. 33272.
#> 6 Kar 50 - 5… 15.9 29559. 108. 18923. 23465. 37508. 47173. 32838.
#> 7 Kar 60 a v… 6.16 28233. 110. 18243. 22472. 35819. 45628. 31727.
#> 8 Kar MUŽI 34.9 30614. 102. 19189. 24082. 38589. 48620. 33934.
#> 9 Kar do 20 … 0.105 24987. 114. 17811. 21450. 30010. 31636. 25361.
#> 10 Kar 20 - 2… 4.79 29328. 104. 20255. 23726. 34611. 41692. 30378.
#> # … with 11 more rows, 13 more variables: bonus_perc <dbl>,
#> # supplements_perc <dbl>, compensation_perc <dbl>, hours_per_month <dbl>,
#> # file <chr>, group <chr>, sfera <chr>, period <chr>, year <chr>,
#> # quarter <chr>, kraj_id <chr>, kraj_name <chr>, kraj_id_nuts3 <chr>, and
#> # abbreviated variable names ¹kraj_id_ispv, ²category, ³fte_thous,
#> # ⁴pay_median, ⁵pay_median_yoy, ⁶pay_mean