Load regional data on monthly earnings by education
Source:R/pv_load_reg.R
pv_reg_monthlypay_education.Rd
Loads data on monthly earnings by education level from one or more local Excel files downloaded from ISPV links retrieved by pv_list_reg()
.
Arguments
- path
path(s) to file(s), Will be file with "Reg_YYQ" and either "PLS" or "MZS" in the name.
- sheet
sheet number; you should be able to leave this as default (2) if using files downloaded from ISPV
Examples
pv_reg_monthlypay_education(system.file("extdata", "Kar_204_pls.xlsx", package = "ispv"))
#> # A tibble: 7 × 23
#> kraj_id_ispv categ…¹ code fte_t…² pay_m…³ pay_m…⁴ pay_d1 pay_q1 pay_q3 pay_d9
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Kar Základ… A-C 0.515 21674. 113. 15715. 18645. 27292. 33804.
#> 2 Kar Středn… D,E,… 1.86 26882. 114. 19530. 22247. 32290. 38086.
#> 3 Kar Středn… K-M 6.77 36790. 108. 26773. 31295. 43586. 50745.
#> 4 Kar Vyšší … N,R 1.59 41519. 108. 30604. 34801. 51020. 60552.
#> 5 Kar Vysoko… T,V 3.70 47039. 111. 36226. 41769. 53262. 67570.
#> 6 Kar Neuved… NA 0.642 39549. 113. 31699. 35745. 43707. 49163.
#> 7 Kar CELKEM… NA 15.1 38544. 109. 24578. 31164. 46771. 55221.
#> # … with 13 more variables: pay_mean <dbl>, bonus_perc <dbl>,
#> # supplements_perc <dbl>, compensation_perc <dbl>, hours_per_month <dbl>,
#> # file <chr>, sfera <chr>, period <chr>, year <chr>, quarter <chr>,
#> # kraj_id <chr>, kraj_name <chr>, kraj_id_nuts3 <chr>, and abbreviated
#> # variable names ¹category, ²fte_thous, ³pay_median, ⁴pay_median_yoy
pv_reg_monthlypay_education(system.file("extdata", "Kar_204_mzs.xlsx", package = "ispv"))
#> # A tibble: 7 × 23
#> kraj_id_ispv categ…¹ code fte_t…² pay_m…³ pay_m…⁴ pay_d1 pay_q1 pay_q3 pay_d9
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Kar Základ… A-C 8.28 24696. 107. 16661. 20221. 30243. 36310.
#> 2 Kar Středn… D,E,… 24.0 26814. 101. 17516. 22160. 34339. 41206.
#> 3 Kar Středn… K-M 18.8 30986. 105. 20008. 24569. 40073. 49988.
#> 4 Kar Vyšší … N,P,R 1.84 34849. 103. 22663. 24777. 45374. 54374.
#> 5 Kar Vysoko… T,V 3.50 42214. 113. 20463. 28177. 65381. 97233.
#> 6 Kar Neuved… NA 3.32 30400. 120. 20496. 26176. 38473. 42299.
#> 7 Kar CELKEM… NA 59.8 28898. 105. 18430. 22914. 36979. 47033.
#> # … with 13 more variables: pay_mean <dbl>, bonus_perc <dbl>,
#> # supplements_perc <dbl>, compensation_perc <dbl>, hours_per_month <dbl>,
#> # file <chr>, sfera <chr>, period <chr>, year <chr>, quarter <chr>,
#> # kraj_id <chr>, kraj_name <chr>, kraj_id_nuts3 <chr>, and abbreviated
#> # variable names ¹category, ²fte_thous, ³pay_median, ⁴pay_median_yoy