Load regional data on monthly earnings by profession
Source:R/pv_load_reg.R
pv_reg_monthlypay_isco4.Rd
Loads data on monthly earnings by ISCO code from one or more local Excel files downloaded from ISPV links retrieved by pv_list_reg()
.
Format
The function returns a data frame with 22 variables. All earnings are monthly gross in CZK.
kraj_id_ispv
character. Internal region code, appears in Excel file name
file
character. File from which this row was read.
isco4_full
character. 4-digit ISCO (occupation) code with Czech ISCO category name. CZSO codelist number 5708
fte_thous
double. Thousand FTEs in this ISCO-4 category - converted to FTE by months paid.
pay_median
double. Median monthly earnings.
pay_d1
double. 1st decile monthly earnings.
pay_q1
double. 1st quartile monthly earnings.
pay_q3
double. 3rd quartile monthly earnings.
pay_d9
double. 9th decline monthly earnings.
pay_mean
double. Mean earnings.
bonus_perc
double. Bonuses ("odměny") as share of pay, as decimal
supplements_perc
double. Supplements ("příplatky") as share of pay, as decimal.
compensation_perc
double. Compensation ("náhrady") as share of pay, as decimal.
hours_per_month
double. Monthly hours worked.
sfera
character. Sphere - salary (
pls
) or wage (mzs
), roughly equals public or private sectorperiod
character. Time period as appears in file name, e.g. 204 is Q4 of 2020. Regional data only comes in Q4, i.e. for full year.
year
character. Year, as 4-digit character vector
isco4_id
character. 4-digit ISCO code.
isco4_name
character. Czech name of 4-digit ISCO category
kraj_id
character. non-NUTS ID of kraj (region, NUTS3).
kraj_name
character. Czech name of kraj (region, NUTS3).
kraj_id_nuts3
character. NUTS ID of kraj (region, NUTS3)..
Arguments
- path
path(s) to file(s), Will be file with "Reg_YYQ" and either "PLS" or "MZS" in the name.
- sheet
sheet number; you should be able to leave this as default (4) if using files downloaded from ISPV
Examples
pv_reg_monthlypay_isco4(system.file("extdata", "Kar_204_mzs.xlsx", package = "ispv"))
#> # A tibble: 81 × 23
#> kraj_id…¹ isco4…² fte_t…³ pay_m…⁴ pay_d1 pay_q1 pay_q3 pay_d9 pay_m…⁵ bonus…⁶
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Kar 1211 Ř… 0.091 63797. 44823. 50958. 9.37e4 1.37e5 77526. 15.3
#> 2 Kar 1321 Ř… 0.205 82598. 38027. 49981. 9.78e4 1.25e5 82159. 17.1
#> 3 Kar 1324 Ř… 0.106 52086. 34483. 41257. 6.58e4 8.56e4 56839. 19.2
#> 4 Kar 1342 Ř… 0.0797 76681. 42009. 52869. 1.08e5 1.72e5 88861. 7.08
#> 5 Kar 1346 Ř… 0.0448 69291. 44588. 61697. 8.33e4 1.27e5 83029. 27.8
#> 6 Kar 1420 Ř… 0.288 43681. 28790. 36769. 6.61e4 1.38e5 58149. 14.6
#> 7 Kar 2132 S… 0.0931 44842. 33570. 39084. 4.71e4 5.09e4 43562. 9.87
#> 8 Kar 2141 S… 0.145 50817. 37180. 43468. 7.10e4 8.47e4 59174. 12.4
#> 9 Kar 2144 S… 0.121 54324. 39622. 44146. 6.38e4 7.05e4 55599. 10.5
#> 10 Kar 2145 C… 0.038 56774. 36814. 45886. 7.49e4 9.23e4 60815. 9.49
#> # … with 71 more rows, 13 more variables: supplements_perc <dbl>,
#> # compensation_perc <dbl>, hours_per_month <dbl>, file <chr>, sfera <chr>,
#> # period <chr>, year <chr>, quarter <chr>, kraj_id <chr>, kraj_name <chr>,
#> # kraj_id_nuts3 <chr>, isco4_id <chr>, isco4_name <chr>, and abbreviated
#> # variable names ¹kraj_id_ispv, ²isco4_full, ³fte_thous, ⁴pay_median,
#> # ⁵pay_mean, ⁶bonus_perc
pv_reg_monthlypay_isco4(system.file("extdata", "Kar_204_pls.xlsx", package = "ispv"))
#> # A tibble: 52 × 23
#> kraj_id…¹ isco4…² fte_t…³ pay_m…⁴ pay_d1 pay_q1 pay_q3 pay_d9 pay_m…⁵ bonus…⁶
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Kar 1112 N… 0.0423 68663. 56052. 64480. 85739. 1.03e5 76977. 15.0
#> 2 Kar 1211 Ř… 0.0419 56678. 42303. 46987. 68375. 8.59e4 60849. 11.2
#> 3 Kar 1212 Ř… 0.0325 48122. 41411. 44095. 63436. 7.42e4 53019. 13.4
#> 4 Kar 1219 O… 0.0714 56283. 39931. 44905. 73506. 8.93e4 60966. 15.1
#> 5 Kar 1341 Ř… 0.125 54150. 44734. 48678. 58765. 6.32e4 54071. 12.4
#> 6 Kar 1345 Ř… 0.255 67589. 51219. 59905. 74106. 7.97e4 66382. 14.0
#> 7 Kar 1349 Ř… 0.0763 64568. 48317. 57700. 70540. 8.77e4 66798. 9.14
#> 8 Kar 2221 V… 0.134 61774. 44912. 49002. 69907. 7.55e4 60004. 12.4
#> 9 Kar 2320 U… 0.301 43450. 37464. 39377. 48715. 5.20e4 44437. 10.6
#> 10 Kar 2330 U… 1.09 45488. 38434. 41694. 49006. 5.21e4 45640. 13.2
#> # … with 42 more rows, 13 more variables: supplements_perc <dbl>,
#> # compensation_perc <dbl>, hours_per_month <dbl>, file <chr>, sfera <chr>,
#> # period <chr>, year <chr>, quarter <chr>, kraj_id <chr>, kraj_name <chr>,
#> # kraj_id_nuts3 <chr>, isco4_id <chr>, isco4_name <chr>, and abbreviated
#> # variable names ¹kraj_id_ispv, ²isco4_full, ³fte_thous, ⁴pay_median,
#> # ⁵pay_mean, ⁶bonus_perc