Load regional data on monthly earnings by profession
Source:R/pv_load_reg.R
pv_reg_monthlypay_isco4.RdLoads data on monthly earnings by ISCO code from one or more local Excel files downloaded from ISPV links retrieved by pv_list_reg().
Format
The function returns a data frame with 22 variables. All earnings are monthly gross in CZK.
kraj_id_ispvcharacter. Internal region code, appears in Excel file name
filecharacter. File from which this row was read.
isco4_fullcharacter. 4-digit ISCO (occupation) code with Czech ISCO category name. CZSO codelist number 5708
fte_thousdouble. Thousand FTEs in this ISCO-4 category - converted to FTE by months paid.
pay_mediandouble. Median monthly earnings.
pay_d1double. 1st decile monthly earnings.
pay_q1double. 1st quartile monthly earnings.
pay_q3double. 3rd quartile monthly earnings.
pay_d9double. 9th decline monthly earnings.
pay_meandouble. Mean earnings.
bonus_percdouble. Bonuses ("odměny") as share of pay, as decimal
supplements_percdouble. Supplements ("příplatky") as share of pay, as decimal.
compensation_percdouble. Compensation ("náhrady") as share of pay, as decimal.
hours_per_monthdouble. Monthly hours worked.
sferacharacter. Sphere - salary (
pls) or wage (mzs), roughly equals public or private sectorperiodcharacter. Time period as appears in file name, e.g. 204 is Q4 of 2020. Regional data only comes in Q4, i.e. for full year.
yearcharacter. Year, as 4-digit character vector
isco4_idcharacter. 4-digit ISCO code.
isco4_namecharacter. Czech name of 4-digit ISCO category
kraj_idcharacter. non-NUTS ID of kraj (region, NUTS3).
kraj_namecharacter. Czech name of kraj (region, NUTS3).
kraj_id_nuts3character. NUTS ID of kraj (region, NUTS3)..
Arguments
- path
path(s) to file(s), Will be file with "Reg_YYQ" and either "PLS" or "MZS" in the name.
- sheet
sheet number; you should be able to leave this as default (4) if using files downloaded from ISPV
Examples
pv_reg_monthlypay_isco4(system.file("extdata", "Kar_204_mzs.xlsx", package = "ispv"))
#> # A tibble: 81 × 23
#> kraj_id…¹ isco4…² fte_t…³ pay_m…⁴ pay_d1 pay_q1 pay_q3 pay_d9 pay_m…⁵ bonus…⁶
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Kar 1211 Ř… 0.091 63797. 44823. 50958. 9.37e4 1.37e5 77526. 15.3
#> 2 Kar 1321 Ř… 0.205 82598. 38027. 49981. 9.78e4 1.25e5 82159. 17.1
#> 3 Kar 1324 Ř… 0.106 52086. 34483. 41257. 6.58e4 8.56e4 56839. 19.2
#> 4 Kar 1342 Ř… 0.0797 76681. 42009. 52869. 1.08e5 1.72e5 88861. 7.08
#> 5 Kar 1346 Ř… 0.0448 69291. 44588. 61697. 8.33e4 1.27e5 83029. 27.8
#> 6 Kar 1420 Ř… 0.288 43681. 28790. 36769. 6.61e4 1.38e5 58149. 14.6
#> 7 Kar 2132 S… 0.0931 44842. 33570. 39084. 4.71e4 5.09e4 43562. 9.87
#> 8 Kar 2141 S… 0.145 50817. 37180. 43468. 7.10e4 8.47e4 59174. 12.4
#> 9 Kar 2144 S… 0.121 54324. 39622. 44146. 6.38e4 7.05e4 55599. 10.5
#> 10 Kar 2145 C… 0.038 56774. 36814. 45886. 7.49e4 9.23e4 60815. 9.49
#> # … with 71 more rows, 13 more variables: supplements_perc <dbl>,
#> # compensation_perc <dbl>, hours_per_month <dbl>, file <chr>, sfera <chr>,
#> # period <chr>, year <chr>, quarter <chr>, kraj_id <chr>, kraj_name <chr>,
#> # kraj_id_nuts3 <chr>, isco4_id <chr>, isco4_name <chr>, and abbreviated
#> # variable names ¹kraj_id_ispv, ²isco4_full, ³fte_thous, ⁴pay_median,
#> # ⁵pay_mean, ⁶bonus_perc
pv_reg_monthlypay_isco4(system.file("extdata", "Kar_204_pls.xlsx", package = "ispv"))
#> # A tibble: 52 × 23
#> kraj_id…¹ isco4…² fte_t…³ pay_m…⁴ pay_d1 pay_q1 pay_q3 pay_d9 pay_m…⁵ bonus…⁶
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Kar 1112 N… 0.0423 68663. 56052. 64480. 85739. 1.03e5 76977. 15.0
#> 2 Kar 1211 Ř… 0.0419 56678. 42303. 46987. 68375. 8.59e4 60849. 11.2
#> 3 Kar 1212 Ř… 0.0325 48122. 41411. 44095. 63436. 7.42e4 53019. 13.4
#> 4 Kar 1219 O… 0.0714 56283. 39931. 44905. 73506. 8.93e4 60966. 15.1
#> 5 Kar 1341 Ř… 0.125 54150. 44734. 48678. 58765. 6.32e4 54071. 12.4
#> 6 Kar 1345 Ř… 0.255 67589. 51219. 59905. 74106. 7.97e4 66382. 14.0
#> 7 Kar 1349 Ř… 0.0763 64568. 48317. 57700. 70540. 8.77e4 66798. 9.14
#> 8 Kar 2221 V… 0.134 61774. 44912. 49002. 69907. 7.55e4 60004. 12.4
#> 9 Kar 2320 U… 0.301 43450. 37464. 39377. 48715. 5.20e4 44437. 10.6
#> 10 Kar 2330 U… 1.09 45488. 38434. 41694. 49006. 5.21e4 45640. 13.2
#> # … with 42 more rows, 13 more variables: supplements_perc <dbl>,
#> # compensation_perc <dbl>, hours_per_month <dbl>, file <chr>, sfera <chr>,
#> # period <chr>, year <chr>, quarter <chr>, kraj_id <chr>, kraj_name <chr>,
#> # kraj_id_nuts3 <chr>, isco4_id <chr>, isco4_name <chr>, and abbreviated
#> # variable names ¹kraj_id_ispv, ²isco4_full, ³fte_thous, ⁴pay_median,
#> # ⁵pay_mean, ⁶bonus_perc